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“Abstract

e

.'-'

"D Systems with wide bandwidth noise inputs are a common occurrence in

»

- ..{:
stochastic control and communication theory and elsewhere; e.g., tracking :E;
or synchronization systems such as phase locked loops (PLL). One is often :ij
interested in calculating such quantities as the probability of escape Egs
from a desired ’error' set, in some time interval, or the mean time for h;
such escape. Diffusion approximations (the system obtained in the limit !ET

-

e

bandwidth + «) are often used for this, being easier to analyze. When the

noise effects in the physical system are small, one is tempted to do an

asymptotic analysis (noise intensity + 0) on the diffusion approximation,

and use this for the desired estimates on the original system. Such a

procedure does not work in general: the double limit bandwidth - =,

intensity - 0 is not always justified. Under quite broad conditions on

the noise processes, it is justified for the systems studied here. We

study a particular form of the PLL owing to the great practical importance

of the system and because it provides a useful vehicle for understanding

the extent of validity of the asymptotic methods for such systems. The

basic analytical techniques are from the theory of large deviations. One

seeks information on the escape probabilities, mean times, and on the most

likely exit paths and exit locations. Also, we seek information on the

interactions between the signals to be tracked and the noise which are most

likely to lead to exit. The large deviations technique is eminently

suited to this job.

TR
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7

Simulations are taken in order to understand the range of validity of

3

1

-‘ ,
LAl A,

the asymptotic method. Agreement between the predictions and sample esti-

T
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mates is good over noise intensity levels which seem to be ever larger than
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. those typically occurring in practice. Since the events whose probability
is of interest have small probability, an ihportance sampling scheme is

used to 'quicken' the simulations. The scheme works well. The required

measure transformations are suggested by the theory of large deviationms,

and are obtained by solving the associated variational problem. The
technique seems to be very appropriate as both an analysis and design

tool for such systems.

Key Words: large deviations, approximations of systems with wide
bandwidth noise, importance sampling, quick simulation, small noise
diffusion models, asymptotic methods, phase locked loops, synchronization

systems.
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Systems with wide bandwidth noise inputs are a common occurrence in
stochastic control and communication theory and elsewhere; e.g., tracking
or synchronization systems such as phase locked loops (PLL). One is often
interested in calculating such quantities as the probability of escape
from a desired 'error' set, in some time interval, or the mean time for
such escape. Diffusion approximations {the system obtained in the limit
bandwidth + =) are often used for this, being easier to analyze. When the
noise effects in the physical system are small, one is tempted to do an
asymptotic analysis (noise intensity -+ 0) on the diffusion approximation,
.- and use this for the desired estimates on the original system. Such a
procedure does not work in general: the double limit bandwidth - o,
intensity - 0 1is not always justified. Under quite broad conditions on
the noise processes, it is justified for the systems studied here. We
study a particular form of the PLL owing to the great practical importance
of the system and because it provides a useful vehicle for understanding
the extent of validity of the asymptotic methods for such systems. The
basic analytical techniques are from the theory of large deviations. One
seeks information on the escape probabilities, mean times, and on the most
likely exit paths and exit locations. Also, we seek information on the
interactions between the signals to be tracked and the noise which are most

likely to lead to exit. The large deviations technique is eminently

. suited to this job. —'%—
Q
0O

Simulations are taken in order to understand the range of validity of
the asymptotic method. Agreement between the predictions and sample esti- o o= :f

mates is good over noise intensity levels which seem to be ever larger than emeiamed
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those typically occurring in practice. Since the events whose probability
is of interest have small probability, an importance sampling scheme is
used to 'quicken' the simulations. The scheme works well. The required

measure transformations are suggested by the theory of large deviatic <,
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and are obtained by solving the associated variational problem. The
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technique seers to be very appropriate as both an analysis and design
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tool for such systems.
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Key Words: large deviations, approximations of systems with wide
o bandwidth noise, importance sampling, quick simulation, small noise

- diffusion models, asymptotic methods, phase locked loops, synchronization

systems.
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5 1. Introduction
. : Let Ek(-) denote a wide bandwidth (BW) process (BW - « as X ~ 0),
. A
: {En, Dsn<=} a sequence of correlated random variables for each X > 0,
§ and w(+) a standard Wiener process. Systems of the types (1.1) to (1.3)
i are frequently used models in stochastic control and communication theory
; and elsewhere
. a. %= E ety
- b A A A
- 2 = X : (X
v (1.2) Xna1 n ¥ AR n’gn)

V- (1.3) dx = f(x)dt + o(x)dw

The function Fk in (1.1) is such that for small ), the process xk(-)

is close (say, in the sense of weak convergence) to the diffusion x(-).

Similarly for the FA in (1.2).

Typically, (1.3) is used as an approximation to the 'physical' models

-
»

(1.1) or (1.2). Signal tracking and synchronization systems (with noise :itl

corrupted observations) represent one very important class of applications "=

:j in communication theory; see, for example, the enormous literature on phase 21

o N

E: locked loops (PLL), [1] to [4]. For such systems, one or more of the com- e
| ponents of the state x in (1.1) might represent the error in tracking a -
o
:3: signal, and the others might represent internal states of the system (the 'fﬁu
ff filter, etc.). Typically, one is interested in estimates of quantities A
!, - such as r 9
p =~
- ey
i el
;: (1.4) Px{xx(t) ¢ G, some t < T} ey
e
i) " -..1
s

?. (1.5)  Egqg, where 1= inf {t: x'(1) ¢ G) , -
T e
- 373?
" o

.
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!! (1.7), (1.8) might be very poor estimates of (1.4), (1.5), even when the
»...'
T e e s o i

2
4

for suitable sets G and times T. Estimates of such quantities are

generally quite hard to get for any of the models (1.1) to (1.3), but
certainly much harder (if not impossible) for the wide BW driven system
(1.1) (or (1.2)), than for (1.3). Owing to this, one is often forced to
use some sort of asymptotic method.

Since (1.3) is much easier to work with than (1.1} or (1.2) one is
strongly tempted to find a diffusion approximation to xx(') or to {X;}.
If the noise effects are not 'small,' then the diffusion approximation
method can give good results [19], [20]. But even for this case, it

might be hard to solve for the analogs of (1.4), (1.5):
(1.4Y) P {x(t) ¢ G, some t < T}

(1.5") EXTG » 1o T inf {t: x(t) ¢ G}

Often, one estimates quantities such as (1.4'), (1.5') by assuming
that the noise effects are small; e.g., by using the model (1.6), and

estimating (1.7), (1.8) via some other asymptotic method.

(1.6) dx® = £(x5)dt + eo(x%)dw
(1.7) P{xe(t) ¢ G, some t g T}
(1.8) Exrg , Té = inf {t: x5(t) ¢ G}

We have mentioned two very different types of approximations. First,
letting BW > = to approximate (1.1) by (1.3), then letting the noise
intensity go to zero (replacing o by eoc) to get an asymptotic estimate

for (1.7), (1.8). This procedure is rather risky in that the estimates of
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bj . 'intensity' of the noise effects in (1.1) is small. See [5] for some f;f
examples. Basically, when ¢ or the noise effects in (1.1) are small, the e

events of interests are rare (e.g., the event in (1.4) or (1.7)) or the

times (1.5), (1.8} very large. The escape phenomenon depends on rarely

- A
- occurring large bursts of noise, and the usual 'central limit theorem like' '\}hf
arguments which are used to model (1.1) by (1.3) do not model these well. f;i:

In order to use an asymptotic expansion based on (1.6} for estimates i

of functionals of (1.1), one must show that it yields the same results as ilg

one would get from (1.1) if the BW went to « and the noise intensity ;:j

went to zero simultaneously (with an analogous result for (1.2)), not Eﬁ

.- first letting BW » «, then intensity » 0. For a large class of noise ;éﬁi

processes, such results are in [6]. These results seem to be crucial if
one is to employ asvmptotic methods for (1.6) to get properties of (1.1).
One interesting asymptotic method based on (often formal) expansions

and boundary layer matchings is discussed in [7]-[8]. A rigorous approach

. to such a scheme involves strong regularity and ellipticity conditions on

the differential generator of (1.3). An alternative approach is via the S

: theory of large deviations, where the estimates (1.4), (1.5) or (1.7), -f{j
. el
y (1.8), involve the solution to a variational problem [6], [9], [10], [11]. fiE:,

A related small noise expansion is in [12]. R

Once the small noise (small e) expansion is obtained, one must ask

3
E; how good it is for values of € which one might expect in applications. .i§}
\ To get such information, there seems (at the moment) little alternative to ;;i{
‘; simulation. The questions of model approximation and validation by simula- E:T:
; tion will be addressed here for one particular PLL. Our PLL model is :?;.
3 chosen both becausc it is important in applications and because it provides &;E

- a good illustration of the general method.

. .- R
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In Section 2, we formulate the particular PLL problem of interest
here. The diffusion approximation form of this system is not of the form
{1.3) unless various ('double frequency') terms are dropped, the system
reduced to 'baseband' form, and the wide bandwidth 'small intensity'
observation noise replaced by small intensity white Gaussian noise. This
procedure is, in fact, valid for our case, under quite broad conditions.
Reference [13] deals with a related problem, and below we comment further
on the relations between that work and ours. The basic scheme of the
theory of large deviations and the simplifications of our model is dis-
cussed in Section 3.

Generally, with small noise effects, the 'escape' probabilities of
the forms (1.4) (or (1.7)) are very small; conversely (1.5) (or (1.8))
would be quite large. In order to get good simulation results with a
reasonable amount of computational effort, a form of importance sampling
is used. The idea is to change the measure on the original probability
space in a way which increases the probability of the 'rare' escape event
on the time interval [0,T]. Then, we get the required estimate by an
inverse transformation. A natural way in which to do this is suggested by
the mathematics of the theory of large deviations, and (as will be seen)
works very well. The idea was first formally used in [14], and is dis-
cussed in Section 4. Simulation results for the PLL (with a constant phase
process) appear in Section 5. It is remarkable that the estimates given by
the asymptotic theory are quite good even for rather large values of «.

Let 6(-) and 6°(+) (for model (1.6), or 8(+) if the model is
(1.1)) denote the phase to be tracked and its estimate, as given by the
PLL. The error 6(+) - ée(-) (or 6(+) - éx(-)) will be a component of

the state x, and we use sets G of roughly the form G = GO = {x: |6-8] < -}.

- . . - ."."a'.' e T e te Y . - - .
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,} This set is standard in the study of the PLL, since when the error reaches =
S: n- the system can 'lose track.' An advantage of the large deviations gﬁ
" : approach is that one can (rigorously) get information on the most likely %&
{S locations of points of escape from G, on the paths in whose (small) Sé
‘: neighborhoods escape is most likely, and on the most likely magnitudes of &E
3 the noise effects when escape occurs. When the signal is time varying, the E%
ié scheme gives the most likely interactions between the signal and noise ;if
. which lead to escape. ‘ii
N In Sections 6 and 7, we discuss the results when the phase varies as ?}
E: it would in a digital pulse phase modulation system. The model and the ?ﬁ
;ﬁ ) simulations are discussed and one can clearly see the interactions between §£
3 the anticipated changes in the signal and the noise processes which are 55
;j i most likely to lead to escape. :;i
: An interesting study of a related problem is in [13]. The PLL in
: [13] is somewhat more complicated than ours. They start with a 'baseband’ E?
2& system of 4th order and reduce it to a 2nd order system. The input signal E%
ii has wide Bw of O(K) , where X is also a system gain, and the observation :SE
- noise intensity (/e 1is used there rather than ¢) is small. Since the oS
i; system is not of the form (1.6), a scale change in both time and state is g;
ij made (in an €, k-dependent way) in order to get a diffusion model whose ?i
f driving Wiener process is multiplied by a small parameter. Let L denote the ;;
53 differential generator of the rescaled system--which we can suppose has the i;
form (1.6). Let VE(x) = Exr‘. Then, formally, L*V&(x)+1 =0, x ¢ G, *
o ; Ve(x) =0, x ¢ 3G, Write vE(x) = exp [g + C(x) + higher order terms]. F;
E; Via a formal expansion and boundary layer matching method, an interesting E;i
% (but heuristic) approximation for C(x) and H are obtained. Their simu- Sg
=, lations were in good agreement with the theoretical predictions over the EF
; g
= 3
5 5
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range of € used. Although the systems are hard to compare, it seems that
our range of € (or at least our range of noise effects) is somewhat
larger, if one uses (e.g.) estimates of (1.7), (1.8) as a measure of noise
effects. The results are hard to compare directly with ours, since the
system types are quite different, and because of the way ¢ and k are
buried in the time and state scaling in [13].

Our method would not get C(x), but the importance of this term,
in general, is not clear. If e is large, then the (small ¢€) approxima-

tion to this term might be unreliable. If e is small, the overwhelming

effects are due to exp H/c2
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2. The PLL: The Model and Approximation

The basic physical system model is in Fig. 2.1. The VCO (voltage F
Y
e el
controlled oscillator) is a device whose output deviates from a reference :&:Q
post
e

frequency according to the input voltage. In order to get an asymptotic
analysis from a reasonably practical perspective we proceed as follows,
using the fact that for many practical systems, the carrier frequency is
high and the BW narrow relative to the carrier but high in an absolute
sense. We use a (high) carrier frequency w' and an observation noise
process whose BW is of the order of 1/y, but is small relative to w' .

Let nY be such that ny/Y -0 as vy - 0, and let W' = wo/nY for some

Let CZ(-), i = 1.2, be mutually independent zero mean second order
stationary processes. The BW of gz(-) will be of O(1l/y). Let p = (e,Y).
Following a common practice in communication theory, we model the observa-

tion noise in the 'passband' form no(t) = euY(t), where
(2.1) ul(t) = g}(t) sin w't + EJ() cos w't

The ¢ indexes the intensity of the noise and vy the BW. The following
two modecls for gz(-) can be used and cover many cases in practice. Tour

case 1, let g;(t) = gi(t/y)//§', where Ei(-) is a component of a

stationary Gauss-Markov process with an integrable correlation function. -
Write wz(t) = ft EZ(S) ds. Then the pair (w}(-),wg(-)) converges weakly
to a pair of mutgally independent Wiener processes, each of which has
covariance fm E£(s)£(0)ds = 0?. This is one standard way of modelling

wide BW noise. We prefer to separate the parameters for intensity and BW,

although they can be combined. Similarly for the case below.
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Much physical noise has an 'impulsive' origin. The 'raw' impulses are
either filtered by a circuit or system, or else the impulses are actually
pulses whose intensity decreases rapidly. To model this, we use the
second case where E:(t) = Ez(t/y)/y. where EZ(~) is a filtered impulsive

noise process, the jump rate and moments depending on vy (increasing and

decreasing, respectively, as vy » 0). The specific model is Case II of [6].

The pair (w?(-),wg(-)) again converges (under appropriate conditions on
the jump rate and moments) to a pair of independent Wiener processes with
covariance o02. See [6] for more detail.

The input to our PLL (signal plus noise) is

P (t) = A, sin (0Tt +8) + eu'(t)

0

and the system equations are (see Fig. 1)

(2.2) v" = Av® + B cos (w't+ 8PP (1)
éo = Hvo ,

where A is a stable matrix. Owing to the complicated form of the

expression (2.3), (2.2) is not suitable for analysis or computation.

cos (w't+8”)0° (1) =

A, X Ay X
> sin (e-e°) 5 sin (9+8°+2wyt)
(2.3)
+ % [E}(t) cos 6° - ﬁg(t) sin 6°]

[£](t) cos (2u7t+8%) 4 €1(t) sin (2u"t+8"))

.

1f we were justified in dropping the parts of (2.3) containing w', then

we could replace (2.2) by the system

ettt o et
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(2
75
s
10
-
- P o AO =
o Vo= AV + B{= sin (8-8°)
d € Y a0 _ Y io BP ’
; (2.4) + 5 [£,(2) cos 6" - £, () sin &7] ,
N F(
.': 5] = Hv
A
o If, furthermore, we were justified in replacing the E}(-) in (2.4)
C; by white Gaussian noise of intensity o, we could use the model (2.5) for
- the 'asymptotic' calculations.
€ € A A€
E: (2.5) dv: = Av dt + B —- sin (6-8 )dt
> + B % odw R
- 8% = Hv® , (8-6%) = -uv® if 8(t) = constant.
?? It turns out that one can, in fact, make all of these approximations
S in the sense that the asymptotic (e-+0, y~+0) estimates of the escape
- probabilities and times will be close. The sense of 'closeness' is dis- ‘lﬁj
> cussed in the next section, after we introduce some concepts from the i5&
theory of large deviations. 2:3
;? With arbitrary WB noise models EI(') such that wz(-) converges Z;:f
weakly to a Wiener process, the estimates of escape probabilities and times e
i =
for (2.2) or (2.5) might be very different for small e,y. For example, oo
if 5}(-) is a scaled continuous parameter Markov chain or if the Iﬁf
;. moments of the impulses in case 2 increase too fast [6]. One must Ei:
- |
s exercise considerable care in replacing (2.2) by (2.5). ::i:
= -
-
X A
% TN
¥ =
AL RS
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Large Deviations and System Approximations

Refer to (1.3) and (1.6) and let o(+) and f(+) satisfy a uniform

Lipschitz and a linear growth condition (i.e., |f(x)| < K(1+|x])).

Define the functionals H(e,+)} and L(-,*) by H(a,x) = a'f(X)+a'c(x)o'(x)a/2

and L(8,x) = sup {8'a-H(a,x)]. In our PLL model the driving noise is

degenerate. To prepare for this, consider the special case where

(xl,xv) =x and ¢ is uniformly positive definite and

1°]
(3.1)  dx = £,(x)dt + eo (x)dw
dx, = £,(x)dt
Split a = (ul,az), etc. Then
Ho,X) = alf) (x) + a3f,(x) + ajo; (Vo] (X)o, /2
and
(3.2)  L(&,x) = 3 (8,-£,(0)" (0,(x)0] () (B,-F, (%))
if 8y = £,(x)

= » otherwise.

Define the action functional

T
(3.3) S (T, J L(é(s),8(s))ds , for

0

$(0) = x , ¢(+) absolutely continuous

o otherwise.

- . B .
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Let x = 0 be an asymptotically stable point of x = f(x) with G
being a bounded open set whose closure G is in the domain of attraction

of {0}. Define

5.(T) = ipf S, (T,8)
(3.3)
S’ = 1lim S (T} ,

X

X e

where the inf is over all ¢(-<) which escape G by time T. Then,

under broad conditions on G [9,10]

» *
(3.5a) 1im €2 log Px{xe(t)é G, some tsT} = -S (T)
3.5b lim €2 log E_1% = §S. G
(3.5b) %m € og Ejto =55, xe

If (3.5) does not hold for a particular set G, it will hold for a small
perturbation of G. A maximum likelihood interpretation of (3.5) appears in
the next section.

Now, let us relate the above facts to the system (2.5) Let 8(t) = 6,
a constant. For notational convenience absorb the A0/2 into B and the

6/2 into €, and rewrite (2.5) as

(3.6) dv® = Av®dt + B sin (8-6%)dt + Bedw

"

(626%) = -HVE dt

Write x = (v,6-6). The set G of interest here is G = G, = {x: |e-8] <®¥ NG

where 62 is the domain of attraction of the stable point x = 0. The

closure G, is compact, but not all of it is in the domain of attraction of {0},

2!

since (0,tm) 1is also a singular point, Nevertheless, owing to the special form,

the additional problems are minor and (3.5) holds.

LRARRA
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The approximation (2.5) to (2.2) is valid [6] in the sense that, for

xeG (p~>0 implies e-+0, A>0)

(3.7a) 1im €2 log P_ (x(t) ¢ G, , some t s T}

AMAVEL LR RR RV

= 13 2 €
= lém €< log Px{x (t) ¢ 6, , some t < T}

g4 om0

«

n im 2 O L 1im 2 €

g (3.7b) lém e log ExTGl 1ém €< log EXTG]

-

! The proof of (3.7) involves details from the theory of large

:? deviations [6]. But without such a proof one could not justify using the
t: simpler system (2.5) for computational purposes. The values of (1.4),

(1.5) depend on appropriately timed (rare) bursts of noise and a simple
diffusion approximation argument is inappropriate.
In order to relate the special form (3.1), (3.2) to (2.5), we change

coordinates if needed, so that B takes the form of the column vector

i
NN
e

(b,0,0,¢++,0) and let x, = v = (vz,---,e-é). Then o =b = 0.

1 1 %

AL ’r'.";" t
)

*

Computation of SX(T) and S;. Let us put the variational problem
involved in (3.4) into a more enlightening form, and work with the special
case (3.1), (3.2). Let 82 = fz(x). Then

= 4, _
L(B,x) = §£F [aiol(x)ol(x)(ﬁl fl(x))

- % ajo, (X0} (X))

wp loje; (0 (6,6, () - 1o, 1%

luxy %2,

where u(x) = oil(x)(ﬁl-fl(x)). Then

atala

y Tt e Ty
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T el
(3.8) s (T,6) = 2 J lul¢s)) ™ as ,
0
with
(3.9) ¢ = £(¢) + o(e)u, ¢(0) = x

L g *
With the form (3.7), (3.8), the calculations of Sx(T) and Sx are

those for an optimal control problem. For our case (3.6),

Av + B sin (e-é) bu
(3.10) f(x) = ,» 6(x)Ju = |0
-Hv 6

k4
Define V(x) = Sx' Then, purely formally, V(+) satisfies the

Bellman equation {11,17],

(3.1 min(t'vex) +w/2) =0, x e g

V(x) =0, xc¢ 3Gl s

where L' is defined by Lug(x) = grad;g(x)- [£(x) +o(x)u].

. *
Whether or not (3.10) is formal, the desired solution V(x) = Sx can

be obtained via the finite difference method of [15], Chapter 9.9.6, or [16]
where a method for a slightly simple problem is discussed. Let h denote
a finite difference interval and e, the unit vector in the ith coordi-

nate direction. Define the h-Grid G = Gn {Jk,e;h, k. = all integers}.
i

By an appropriate choice of finite difference scheme for the derivatives

in (3.10), one can obtain a finite difference solution Vh(x) which converges

*
to Sx uniformly in any compact set in Gl'

hold for our case (3.10), and G = Gl' The computational method also yields an

approximation uh(x), x € Gh’ to the optimal control u(x).

g v s LR RN

The conditions required in [15]
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In the computation, we used the set G, = {x: |6-¢] < 7} in order not

. to have to calculate the domain of attraction of x = 0. But the result is

A
.f .

3

the same, since once the path exits Gl’ it will leave G0 with u(x) = 0 o
(no additional cost). R
I
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4. Exit Paths and Measure Transformations

sT.TETsEENSL S . . .
s

We work with the quantities (3.5) for the system (3.6), but there
are identical interpretations for the left sides of (3.7). Let there be a
*
finite number of minimizing functions {¢I(°), i<k} for Sx(T)' Then

for any X > 0 and small €, the overwhelming proportion of the paths

/Y Y LY T ..

which exit on the time interval [0,T] starting at x, exit in

u NA(¢I(.))’ where N is a A-neighborhood. But the probability of exit
i

A
on [0,T}] 1is small for small .
Let there be a finite number of minimizing functions éi(-), i<k, for S,.
For our PLL problem these occur in pairs in that if ¢(-) is a minimizer,
so is -¢(+). (Obviously, there are an infinite number of minimizers
$(+), since we can always let $i(°) = 0 on any interval [O,tl], tl >0;
but we do not need to count these.)
- For small € , the path xe(-) spends most time in a small neighborhood
of the origin. Occasionally a large burst of noise pulls it out - but, with
a very high probability, it will return to a small neighborhood of the origin

- before exiting from Gl' Eventually, however, the path will (w.p.1l)} leave Gl'

When it does, loosely speaking, it leaves in a small neighborhood of the path

:E {51(-)}. We can quantify this as follows. Let A > 0 and let Wy > py 2 0
% be small, and let N (0) denote a My neighborhood of the origin. Then [6]
‘ i
- for x €N (M,

M.

i
. (4.1) 1im P_{x“(t) € U N,(3;(t)) until the exit time |
P £ X i i r
g xe(-) exits G1 and does not return to Nu (0) after leaving S
- i S
ot N, (0)} =1 B
. My S
3 . rq
There is only one pair of optimal paths. The parts of the functions

R A N A W T P AT W P U R A N T T T O S T ST e R TR SR L
S S0 SIS B PSS P AR W IV RS T I L W S A S A A U R R AR S L VLR VIV A VPV TRV
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{¢I('), i<k} on any finite interval [O,Tl] converge to {51(°), igk}
on [O,Tl] as T » =,
It is clear from this discussion that the most likely noise sequences

which lead to exit are of the form (write ¢(~)=(¢l(-),¢2(')), via the form (3.1))

t
(4.2) W) ~ 2 oI EW) 16, (1) - (0 - fo £,(5())as]

1Y AOAAPANY OB LSRR

AERR NP

- *
where ¢(*) 1is a minimicer for SO. From (4.2}, we can get a clear idea

of when the noise (leading to exit) will be large, and in which direction

A ST
o] PP

it will push the system.

& r

N Y T T e T v w v v
LY o .‘T‘ SR
LT ey At et
B
f .

*

*
A likelihood function interpretation of Sx(T) and S0 It is

suggestive to view (3.4) as selecting an exit path which maximizes

a likelihood function. Since for each € > 0, xe(-) is not differentiable,
one cannot speak of a likelihood function in a strict sense. But, for the
Gaussian case (3.1), one can get an intuitively reasonable maximum likeli-
hood interpretation. Even from this the estimates (3.5) do not follow
readily without the large deviations formalism.

Consider the discrete parameter process

.

Eff €,0 _ Le,A €,4 €,4

{2 (4.3) X0 = X0 + of (X7 + YBeo (X" T)E

t.'—._

!E where {Ei} are i.i.d. and normal (0,1). The likelihood function of
E (x5%, 1 < T/8) evaluated on the path X{'" = §(i8), i < T, is (4.4) times a
P

f factor not depending on the path.

.,

o (4.4) L7(T,¢) = 1 exp - — |u(ia)]” ,

Y 2¢2

A,
."

where

¢(ir+8) = ¢(in) + Af(¢(in)) + 2o(¢(ia))u(is)

s RS

y v v
a

AR

b
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We have
(4.5) S(T,$) = -lim €2 log L(T,$)
A
€,4A . . . . . €,4
Let x ’ (+) denote the piecewise linear interpolations of {xi }

£,A
G

standard methods of the theory of large deviations [9,10], it follows that

with interval A, and = the escape time from G of xE’A(-). By the

if A >0 as € - 0 and under broad conditions on G

. 2 E,A *
lim ¢4 log Px{x (t) ¢G, some tgT} = -Sx(T)
£,0

2

(4.6)

s & * 0

lim €2 log E_ 7 = -S0 , X €6

£
€. b x G

If (4.6) does not hold for a given G, then it will hold for a small
perturbation of G. Also, (4.6) holds for the discrete time form of our
special case (3.6).

These estimates provide justification for simulating the discrete

parameter system in lieu of xc(-).

Importance sampling. Now that we know what the 'most likely exit

paths'are, we are ready to define the measure transformation used to
facilitate the simulations. Following the idea in [14], we transform the
measure so that exit on [0,T] 4is not a rare event. T will be large

enough so that S; " S;(T). To get the measure transformation, we use

the approximation to the optimal controls uh(-) given by the computa-
tional procedure discussed at the end of Section 3. For x € G = G but not
in the grid Gh, we define uh(-) by a linear interpolation over the values
in adjacent grid points. For simplicity, we write u(x) below for uh(x).

€

Write the system in the form (4.7) with associated measure P We work

(=]

on an arbitrary interval [0,T]. Define x€(*) on {0,T] by (4.8), with

. €
associated measure Pu.

N
. N
~ .
o
. .
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'

€ f(xg)dt + codw

. (4.7) dx

. (4.8) dx® = £(x5)dt + ou(x%)dt + eodw . E

1{.
r L

"'
s
e b A

e

Again, using the notation x = (xl,x.,), ¢ = (01,0'), «++,  the Radon-

Nikodyn derivative is [18]:

LI
<y
. L
i

RS

€

dp T
0 1 1 - 2
(4.9) — (w) = exp =~ EJ lu(x(s))|“ds
dp g2 0
u ———
T k.
) [z -1,,-€ -
- u (x(s)]c (dx; (s) - f (x(s)]ds] N
0 1 %1 1
.- I'e use a ciscrete form in the simulations. Thus, define the processes . R
{xisﬂ}, {ii’u} (with associated measures pg,A’ PE’A’ respectfully, on [0,T/¢]) :E:i
o)
, €,8 _ €,8 €,A :'_::'._.—j
4.10a)  X20= XUT o« Af(X]7T) 4 e/Kor,i o
€, _ <E,A <€,4 <€, 40 R
(4.100) X710 = X0U + af(X77) + o u(X] )+e/A_oEi :
We always let u(ffi:’A) =0 after the first exit time from G = Gl. We :T:{Zi
- , €,0 _ ge,b _ yEsb S€,40 i;g
- have, for wi = Xl,i+1 Xl,i Afl(Xi ),
fa) ~‘_'.: .
ape> T/5-1
(4.11) S = T exp & I} lu(xe7 2y 12 A-u'(i?’A)oilw?’A] . L
dPE, 0 52 < 1 1 1 ‘
u k-
We will simulate using {4.10b). Let M denote the number of (mutually \
independent) runs, indexed by W s i ¢M. Define the set A whose ;:-::.5

: probability is of interest: 5
X S
:: A = {paths exiting G = Gl by time step T/L, starting at x(0) =~ 0} .j:::::
Y ’_\

Then (4.12) is an unbiased estimate of P;’A{A}, the escape probability

’l 'n ’O
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-:: from G, for (4.10a). Lo
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, hf ape + o
N 1 -
N (4.12) =) — (w,) I . PO
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See [14] for additional discussion on the use of such transformations, >

-j: particularly for the sense in which they are optimal (in the sense that }
{i they minimize the variance of certain errors, among all such measure trans- i

formations. As seen in the following sections, the importance sampling AN

o methods works very well.
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5. Simulations with 6(t) = 6, = 0 DN

. We use a first order filter, and the simulated PLL equations are the

discrete time form of
€ € . €

dx1 -axldt + b(sin xzdt + eduw) 5252

(5.1) K.

dxi = -xidt , xg = (e-ée) . Sl

In all cases, a = 2, and the results in Tables 1 to 3 are tabulated

according to the value of b. In order to best compare the simulation and

the theoretical estimates, we write (4.12) in the form exp —§€(T)/52 and
tabulate §€(T). We use 5€(T) for the equivalent sample probability of b
escape on [0,T)]. There is clearly a very close agreement between the

theoretical predictions and the results of the simulations.

The (¥ escape) denotes the number of simulated paths escaping on [0,T]
under the transformed measure (for the importance sampling), not the measure of
(5.1). It indicates the savings in the cost of simulation. The 'eigenvalues'

denotes the eigenvalues of the noiseless (5.1), linearized at x = 0. S
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Table 1

b = 1, eigenvalues (1,1), A = .02, 200 Runs .

T € # Escape s 55 (M) (M) E‘ﬁ
3.5 .2 15 2.55 2.59 .8 x 107 E
.4 83 2.55 .95 x 10 :
.6 121 2.55 .84 x 10~

.8 137 2.39 .24 x 10

5 .2 42 2.55 2.56 .16 x 10
.4 155 2.46 .21 x 107

.6 171 2.39 13 x 107°
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.1 184 1.80 .17

7.5 .2 129 2.55 2.5 .81 x 10
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3.3

b = 2, eigenvalues (-1%/1), Ao = .02, 200 Runs

# Escape
5
58
95

109

40
128
150

157

107

179

Table 2

1

1

.28

.28

.28

—-€

S (T)

1

1

.36

.41

.32

.37

.29

.25

.09

.84

.25

.12

.02

N e T erTyo™

PE(T)

.15
.25

.12

.12
.42
.49

.23

.29
.93

.59
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18 x 10714

1073
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Table 3

b = 0.75, eigenvalues (-1/2,-3/2), A

# Escape S
9 3.43

95

124

140

47 3.43
156

175

181

3¢y
3.45
3.41
3.39

3.21

3.37
3.35
3.12

2.82

= .02, 200 Runs

PE(T)

.38 x 10727

.56 x 107°

.82 x 1072

.66 X 10’2
.26 x 1073

.82 x 1079

17 x 1073

a2 x 107}
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Comment on the Choice of T

b d
To get Sx(T) and the associated measure transformation, we need
controls which are time dependent (hence more computation and memory is
needed). In applications, the value of T is not very important (multi-
plying or dividing a reasonable T by a constant k also yields useful
results). The e-effects are much more pronounced. For 'large' T,
s* - *
x(T) - SO

path occurs long before T. In our problem the optimal exit paths exit at

and most of the 'control activity' for the optimal escape

8-6 = #m , v = 0, and take an infinite time to reach these points.

Because of this, we chose T as follows. Using the optimal control u(x)
and the noiseless system, we start the trajectory very close to the origin
(not at x = 0, since wu(x) = 0) and let T* denote the time the path takes
to get to a position x near the exit point where S: is very small. Our

*
larger T-values are about 1,25 T ,

Discussion of the Data

As can be seen from the data, even for the smaller T, the measure
transformation obtained with the (nearly) optimal u(-) for S; yields
excellent results. If the prediction is close to the sample estimate for
large T and small € (say e = .2), then we are very likely justified in using
the small € values of §€(T) as estimates of Sg(T), and then we can compare
these to the sample estimates for larce values of «.

The role of the measure transformation is made very clear by the
tables. E.g., for ¢ = 0.2, b=1 and T = 3.5, the probability of escape
is = 10'28. An estimate of such a quantity would require an impossible

amount of computer effort. But, via the importance sampling measure trans-




Y

formation, in 200 runs there were 15 escapes. For the transformed measure

this corresponds to a (not small) probability of 0.075. Under the inverse
transformation, it becomes the true estimate of the order of 10'28. The
method is efficient, indeed.

The size of the noise effects can be judged by the estimated escape
probability. For realistic systems, one would expect small errors
(perhaps of the order of 10'4 or smaller). Yet our predicted results are
quite good even for values of ¢ which correspond to much larger escape
probabilities.

As € increases, the theoretical predictions increasingly understate
the escape probability: the noise is stronger and it is unlikely that the
random escape paths of xe(-) are concentrated in a small tube about the
optimal escape paths.

The vector field of the noiseless system (b = 1.0) is in Figure 5.1,
and for the optimally controlled system in Figure 5.2. The control

activity is negligible near the origin or near x, = 0, x, = tn, or for

1 2

large values of «x The most likely noise bursts which lead to exit occur

X
when the filter state Xy is not large. For small €, the exiting paths

were usually in a small neighborhood of the optimal paths (0 -+ y), or

(0 » -y), as indicated in Figure 5.2. Even when ¢ 1is rather large, the most

likely exit paths are reasonably close to the optimal paths. Two typical cases

are plotted in Figure 5.3, one exiting at (0,7) and the other at (0,-m).

. - S

P T S PG T P e S R S
L, T R N P UL AP - o et . .
PP WAL U WAL Wil W W IPUE Y s SRR DI Y GO W | PN T PP W YIRS




e AT K, S R

P Dt S A e B D) » - n -

A Anln.. ot B s_x . A A . AR AR DIV L - (LA PN ) ‘“"

\\\ a- ey 'u-. \N.-- P AL A A e, . R 0 A MEDEAENEMES RO
. b ! .

F - ‘ . v ‘ ] N . r N * . N .
-. lnsq...n. AN A Ve e e U e d e Ty PRTICARIPERAS s e e L N LA P
LAl s .v\ e rv-.,..............- [ PRPAEATRER A O N+ A S AR AR elagh oo P s .

10

> o

27

FIGURE 5.1

PRSP
o e .

A
aas alda

NOISELESS PATHS, b=1.0

- -'\.4'_

R Sy




-mT 1
1 1 '

A | 1 A A A 'y

-10 -5 gy 5 10

. b=1.0, OPTIMAL EXIT PATHS:
OPTIMALLY CONTROLLED PATHS

FIGURE 5.2

.....................................
.............................................................................

..,...,..,..--.,..
LAARINY

;‘{’.’ Pl 4
b 2 ' %22 "-"‘.

s

. T 1 R RON e L AR AP L o
St PP R . R . el . S
PR A R R A e e e e, PR AR,
'L I PP R . N D L . [ A O v » * A LN

IR AR = AR ot S et ¢ . -y

r L,



3
b +
} beey?
|/ 4
/ x_3-
—
— el

P

+
+
+
+
b

+
+
+
+
+

Two EXITING PATHS

- emmmm . s s st s L EEERe .. _EEERC. ... 'EER

ARl DR~ AP AN, - (ICAUEIRINERENE (R .-.A

b =1,0

,005.
Ficure 5.3

0.6, 6 =0




I3
v
v
'
)
'
'
.
'
’
v
'
¥
v
’
'
\
v
b
r
"
r
)
(4
r
v
2
.
-

N Sl
3 30
l ¢
5
N o
N 6. Time Varying Phase: The Model ﬁ{
s o
b} el
l In order to illustrate the interactions of signals and noise which ) kf
- lead to the most likely escape routes, and to check the range of validity :{j
. L
: el
P of the large deviations estimates when the signal varies with time, the a0
'y S
Y . . . . S
' following version of a pulse phase modulation system was considered. The [
N data signal is a sequence of pulses, each of value *1 and constant over an Fjﬁ'
interval of unit length. When the sequence changes from a +1 to a -1, the f‘f
i transmitted signal phase 8(t) goes from +mn/4 to -n/4, and conversely fi?
f
when the data sequence jumps from -1 to +1. The probability of changing o
sign is p e (0,1). The object of the PLL is to track 6(t) (hence, to track
i the data sequence). Often the transmitted signal for such a data sequence . t*:

changes from #*n/2 to +7/2, and a form of the PLL which is better suited
to digital data is used. But the system used here well illustrates the
i general principles. -

The system is (for a general filter)
(6.1) dv® = AvEdt «+ B(edw + sin(e-ée)dt] ;if
d(6-6%) = -Hvfdt + dJ ,

where J(:) 1is a jump process which jumps by #7/2 depending on the direction

of change of the sign of the binary data sequence. We take the paths of 6(-)

and ee(-) to be right continuous.

o R
i' The comments on large deviations in Sections 3 and 4 all hold here, by :fi
5' proofs which are very close to those used to support the assertions in those - F{;»
; sections. Owing to the presence of the time varying signal, the action functions :Ezi
- must depend on time as well as on the direction of the next possible change in :EE
-g J(*). The appropriate action functional is

1 (7 2
(6'2) ST,X(T’(b’J) = _2' JT ‘U(S)‘ ds ’

.
-~
o’
‘e
3
-
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where

. + O
(6.3) d¢ f(¢)dt + Budt [dJ] ,

¢(1) =

Here 1t 1is the initial time, and ¢(1) = x the inital condition and J the

future jump path. J(+) also acts as a control force here - but is confined to

be a possible signal path. Define

(6.4) L(T,) = inf S__(T,0,9) iifj

¢J ’ _._'.g
b
(6.5) ST,x(i) = %i: S ,X(T,t) ) o

where the inf 1is over all ¢(+) and J(+) satisfying (6.3) with

d(t) ¢ G1 for some t ¢ T, and the next possible jump of J(-) after =

is = Then, via mild modifications in the standard methods

(6.6) 1im €2 log Px T {xF(1) ¢ Gl,some 1<tgTY = -S. (T
e H

Also the analog of (3.7a) holds.

*
The limit ST X(+) 2 V(t,x,+) has an optimal control interpretation
V(t,x,*) = min {S (T,6,J): ¢(0) = x, (6.3) holds,
X,T
T’¢)J
$(T) $ G, > mext possible jump after = is %,
V(t,x,%) 1is periodic in 1; V(n,x,%) = V(0,x,%), all n, and there is a possible
discontinuity at 1t = integer value. Because of this, V(1,x,*) satisfies the

Bellman equation (6.7), (6.8), for x € G; with V(r,x,%) = 0 for x ¢ G,.

A(r,x,4) LuV(T,x,:) + u2/2] for 0 ¢t <1,

(6.7) 0 = min [—32
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(6.8) V(17,x,2) = min {V(0,x2(5, ),%), V(0,x,2)}

The numerical procedure alluded to in Section 3 can still be used--
We use the state variable triple (t,x.*', with x € Cl and 1 € (0,T).
All the comments in Section 4 concerni: ¢ the most likely exit paths
continue to hold, except, of course the exit paths and solutions to the
variational problems might have jumps at integer values of time.

The importance sampling method and measure transformation are also
almost identical to those described in Section 4. We work with the discrete
parameter systems on [0,T] (with measures P;’A and PE’A, respectively,

where u is the optimal policy obtained from (6.7), (6.8)).

v€,8 _ T€,A =€, b b 0
(6.9) Xieg = X7 # R0 [o] uves [o] 8 * [J(iA+A)-J(iA)}
€,8 _ y£,A €,4 b 0
(6.10) X;ip = X0 e (x5 evh [0} £, + [J(iA+A)-J(iA)]

Then with u(x,t,j) denoting the optimal control at time t, when the

next possible jump can be j, we use the measure transformation

A
art’ T/A-1
(6.11) __g"K (w) = N exp 12[%-lutx?’A,iA,j(iA))le
’ € 1
dPu 0
SEL,A L. L. -1 e,
-u'(Xi ,1A,J(1A))ol wi s
_ e,A _ =€£,b _yE.d s€,4
where 01 = b and wi = xl,i+l X1,1 Afl(xi )

*
T was selected as in Section 5 for the constant phase system.
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7. Simulations With Pulsed Phase

The simulations all started with x(0) at zero, and with the next
possible jump in phase being positive. Two types of jump sequences J(*)
were used. In the first, denoted by 'random jumps,' the phase changed by
in/2 at each unit of time with probability p = 1/2. Solving the varia-
tional problem for S;,O(+) yields a unique minimizing pair (6(*),J(*)), where
¢(+) is an 'optimal escape path', starting at x = 0 at time Tt = 0. The J(*)
might have one or many jumps in it. When J(+) was used in lieu of random
jumps, the results are labeled 'optimal jumps' in the tables below,

Tables 4 to 6 list the results of the simulations [x(O) =0, 1(0) = 0),
and excellent agreement between the sample estimates and the theoretical
predictions. For example, in Table 5, where ¢ = .6 and the estimated
escape probability is the very high 0,37, there is still good agreement.

The results of the simulations with the 'optimal jumps' should be somewhat
more consistent with the theoretical values of S;’O(:) than would the 'random
jump' simulations, since it is the optimal jumps which are used to compute S;’n(t).
But agreement is good for both cases. The sample §E(T) values for the random jump
case are larger than for the optimal jump case, as expected, since the optimal
jumps are calculated to help force the system out of Gl' But, as € = 0, the two
estimates are close. For small €, the exit paths were in a small neighborhood of
the optimal exit path. Two optimal exit paths are plotted in Fig. 7.1, for b =1
and b = 0.75, when the next possible jump is +n/2 in the first case, and -rv/2

in the second case.

For the case b = 1, the optimal path waits until time T = 1, with zero control
u(x) then jumps to (0,7/2), then a large control effort moves it close to the

optimal exit point (0,7m), during which time there are no further jumps. For the

.
.
1]

v

-

c >
-"_,- - é !

R

v

7




P i A o P!

SILIS

‘s

a4 'l

10
a W

'
a

34

case b = 0.75, the optimal exit path involves waiting at the origin with

zero control until a time T, < 1, then being controlled to Y1 in [Tz,l],
then jumping to y, at 1= 1 and finally having a burst of control effort
which moves it close to the optimal exit point Y3» during which there are no
further jumps. The intervals of heavy control effort (and the corresponding
directions) correspond to the most likely intervals during which a burst of
noise (and its corresponding direction) will lead to exit. The first burst of
noise on [Tz,l] positions the path to take best advantage of the next jump. Of
course, even if the first burst of noise occurs ‘'on schedule', the next jump
might not occur 'on schedule'. Then, most likely, the system will drift back

to near the origin. What we have described are the paths in small neighborhoods
of which exit is most likely to occur. The sample paths some time before the

'final sequence' leading to exit might be rather complex--owing to the jumps.
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Optimal Jumps:

T €

10 .2

Random Jumps, p = 1/2

10 .2

.3

15 .2

hES

Eigenvalue (-1,-1), A

*
T

145

251

335

399

25

125

219

265

312

64

274

10

95

10 Sec, 500 Runs

...........

0.025, b =1

.71

.63

.83
.87
.86
.86

.84

.81

.82

.84

.98

.....
Sa o e ety
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13 x 1078
11 x 1073
.72 x 1072
.58 x 107}
17
11 x 1078
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.82 x 107°
.22 x 1072
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Table 5

(2,2) Eigenvalues (-1%vi), A = 0.025, b = 2 :

*

T =6 Sec, 500 Runs

.
» |

T
R
AL RN
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r?

Random Jumps, p = 1/2
T £ # Escape S

* +
O’O(")
6 .2 86 .40 .40 5 x 10

. ey
.

I34e)) M

3 187 .41 11 x 107} o
4 233 .44 .63 x 107
5 299 41 .20
6 367 .36 .37 . E

.7 407 .31 .53

8 3 228 .40 .38 .14 x 1071
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Table 6 :.'il

Eigenvalues (-1/2,-3/2), A = 0.025, b = 0.75

*
T = 10 Sec, 500 Runs N

-
Random Jumps, p = 1/2 ﬁ
0.0 s°(m) (M)

- 10 2 180 1.15 1.11 .84 x 10

3

T € # Escape S

A
. A
R I

“ataTs

12

.
F

,

o, -
o .‘A.‘r
N )

. .3 235 1.16 .26 x 10~
.4 279 1.24 .42 x 107

2 .5 315 1.18 .88 x 10~

.7 354 1.19 .88 x 10~ e
.8 373 1.14 .17

.9 409 1.08 .26

8 2 124 1.15 1.11 .94 x 10712
3 183 1.20 17 x 10
.4 242 1.24 .44 x 1073 B

.5 239 1.28 .61 x 107
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Figure 7.1 indicates an optimal exit path, but it does provide a picture
of where and when the controls are strongest (equivalently, where and when
the noise bursts which lead to exit are likely to occur). We will now describe
part of the time dependent control behavior, for the case b =1 on the interval
{0,1), when the next possible jump in phase (e—é) must be negative. Since
the control is added to the uncontrolled dynamics, it will be useful to refer
to Fig. 5.1.

There are 2 regions where the effects of the control are large and its
effects obvious. In a small neighborhood below and to the right of (0,n)
(in the phase plane) the controls are large and positive and essentially
independent of time. Here, the control is trying to complete the job of
pushing the path out of G,- The relatively small time dependence is
probably due to the fact that for the deterministic optimal control problem,
there need not be another jump. If the process is close to (0,v), it is
‘cheaper' to treat it as though there were no additional jumps. The second.
area where the controls are large is in the brood region below the origin, but
here the behavior is quite time dependent. The controls act to counteract the
unforced system's damping, so as to position the process such that a jump of
-n/2 will (or nearly will) drive the path out of Gl' Directly below the
origin the control takes negative values, which increase as 7 - 1. The dominant
effect here is to 'slow down' the path and prevent it from being pushed into
the right half plane, where it would be swept upward and further away from the

-t/2 phase level before the next 'negative' jump occurs.
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